Process Analyzer Applications

The Claus sulfur recovery unit (SRU) and tail gas treating unit (TGTU) require a suite of process gas analyzers to operate safely, protect the catalyst/amine at high efficiency and meet environmental regulations for sulfur dioxide (SO₂) emissions.

The development of sulfur recovery for oil refining, gas processing and coke oven plants was largely driven by environmental regulations in the early 1970s, resulting in AMETEK’s development of the SRU tail gas analyzer. Optimization of the process and further enhancements gave genesis to numerous other analyzer applications. This application note covers the seven possible analyzer tags that are addressed by AMETEK (see Figure 1, simplified process flow diagram).

The hydrogen sulfide (H₂S)/SO₂ SRU tail gas (air demand) analyzer (AT3) is the one constant – every SRU will employ this critical analytical measurement. If the SRU is followed by a TGTU, there is at least one, and possibly two, additional analyzers located at sample point locations AT4, AT5 and/or AT6.

The feed gas/acid gas analyzer (AT1) is becoming more prevalent, as recent developments provide real-time full composition analysis to mitigate hydrocarbon (HC) upsets. In addition to measuring H₂S, ammonia (NH₃) and total HC, the feed gas analyzer can quantify the acid gas contaminants (BTX, methanol, CO₂).

To identify a potentially explosive environment in the sulfur pit or tank, an analyzer (AT2) measuring H₂S should be permanently installed.

Finally, the emissions analyzer (AT7), in its simplest form, reports the SO₂ emission but can also be used as a process optimization tool if the emission is expressed in mass basis terms.

To find out more or request a quote visit our website ametekpi.com
IPS-4 UV/IR

A full composition, real-time analyzer accounts for all O\textsubscript{2} consuming species in acid gas streams. Using a combined ultraviolet (UV) and infrared (IR) "full spectrum" technique, total hydrocarbon (THC) is measured in the IR as "methane equivalent" and H\textsubscript{2}S is measured in the UV so the exact amount of air can be added (or subtracted) from the reaction furnace for steady state control.

Benefits of acid gas analyzer include:
- Where transient spikes of HC cause sudden increase in air demand – resulting in an H\textsubscript{2}S spike at the tail gas – and when the event is over, SO\textsubscript{2} breakthrough into the TGTU, (see Figure 2)
- NH\textsubscript{3} measurement for (refinery) sour water stripper (SWS) acid gas.
- Additional measurements for quantification of benzene-toluene-xylene (BTX) and methanol (MeOH) contamination in (natural gas processing) acid gas
- Material balance and mass emission calculations
- Heated Acid Gas (HAG) probe offers a single connection for sample extract and return to process. Always consider adding the HAG probe and sample point at feed stage or SRU outage
- Rated NEMA-4X (IP65) for outdoor installation; a cabinet or shelter is not required

888/930 Pit Gas

Liquid sulfur contains ~350 parts per million (ppm) of dissolved H\textsubscript{2}S and spontaneous degassing results in accumulation in the head space. If the sweep gas is interrupted, H\textsubscript{2}S can reach the lower explosive limit (LEL) (~3.25 %), (see Figure 3).

Benefits of the pit gas analyzer include:
- Computational fluid dynamics (CFD) modeling confirms localized H\textsubscript{2}S concentrations can be 16 times the mean value, indicating values of ~2,000 ppm H\textsubscript{2}S which may constitute an imminent hazard
- SO\textsubscript{2} is monitored to alarm for a smoldering pyrophoric sulfur fire
- The pit gas analyzer can also be used for mass balance purposes as a sulfur pit vent routed to the incinerator accounts for approximately one-third of the emissions

Figure 1. Simplified process flow diagram showing eight process analyzer tags

AT1. ACID GAS ANALYZER (SRU Feed Forward Control)
MEASURES: H\textsubscript{2}S + Total HC (NH\textsubscript{3}, CO\textsubscript{2}, BTX)

Figure 2. Field data/HC process upset
(Refer to application note F-0299 Feed Forward Analysis for Sulfur Recovery Units for additional details).

AT2. SULFUR PIT (TANK) ANALYZER (Lower Explosive Limit)
MEASURES: H\textsubscript{2}S/SO\textsubscript{2}

Figure 3. Sulfur pit high H\textsubscript{2}S and SO\textsubscript{2} values (just prior to an incident)

To find out more or request a quote visit our website ametekpi.com
AT3. TAIL GAS ANALYZER

888/900 Tail Gas
Measurement of H$_2$S/ So$_2$ in SRU tail gas for feedback (trim) control of the process air. Reliability has evolved to the point where the analyzer anticipates and reacts to adverse process conditions. With an installed operating base in excess of 2,000 units, AMETEK offers two types of tail gas analyzers, the Model 888 and Model 900.

Benefits of the 888 Tail Gas:
- Close-coupled (no sample line), mounts directly on the pipe
- Does not require climate-controlled shelter, rated for 60°C (140°F) without external cooling, and automatic flow control

Benefits of the 900 Tail Gas:
- Extractive (sample line) – for installation in an analyzer house in extreme climates, or if the sample point location is compromised due to piping design, or for measurement of carbonyl sulfide and carbon disulfide (COS and CS$_2$)
- Sample handling is close-coupled but external to the process, at a safe and accessible distance
- Optional double-block isolation from the process

AT4/AT5/AT6. TAIL GAS TREATING UNIT (TGTU) ANALYZER

931/932 TGTU
The TGTU increases sulfur recovery efficiency up to 99.99% (<100ppm So$_2$ emissions) by combining a reduction stage and amine treating to recycle H$_2$S back to the SRU.
The primary purpose of measuring excess hydrogen (H$_2$), (0 to 5%) is to ensure full conversion of all sulfur compounds to H$_2$S.
The secondary function is the measurement of the residual sulfur compounds. The sample point can be in one of three locations. As H$_2$ does not essentially change after the reduction reactor, the utility of the sulfur gas measurement varies according to design needs and sample point location. 931 and 932 analyzers, both use UV spectroscopy to measure single, and multiple species, respectively.

Benefits of the TGTU analyzer include:
AT4 – Absorber
Measurement of So$_2$ breakthrough from the reduction reactor to the quench column. So$_2$ values in excess of 5ppm can deactivate the amine
AT5 – Quench Outlet
Measurement of H$_2$S (0 to 5%) to quantify the load to the amine treater and provide a material balance on the SRU
AT6 – Absorber Outlet
The most common sample point for H$_2$S (0 to 250 ppm), which

Figure 4. COS upset data from TGTU absorber

To find out more or request a quote visit our website ametekpi.com
AT7. CONTINUOUS EMISSIONS MONITORING (CEM) SYSTEM

909/910/919/920/914 CEM

SO₂ emission, measurement base, and parameters vary according to:

- If SO₂ is reported on a mass basis, requires a stack gas flow rate and “hot-wet” analysis of SO₂
- If the SRU is followed by a TGTU, the measurement base is typically “dry” basis
- If the TGTU can be bypassed, the SO₂ analyzer can be dual-ranged (0 to 500 ppm/0 to 1% SO₂)
- The 914 is a built-to-order CEM that includes all the components needed for a compliance monitoring and reporting project, using a dry extractive sampling technique
- The 909 and 910 analyzers incorporate gas flow rates. The 919 and 920 do not

SERVICES

Our in-house service centers provide after-sales services to ensure you get the best performance from your system. This includes technical support, certification, calibration, commissioning, repairs, servicing, preventative maintenance and training. Our highly trained technicians can also attend your site to cover planned maintenance schedules and repair emergency breakdowns.